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Abstract Phytoplankton abundance, as chl a, in
Saginaw Bay, Lake Huron was modeled using arti-
ficial neural networks. Suites of abiotic variables
served as predictors for the trends/patterns in chl a
concentrations. Spatial and temporal gradients of
sampling stations throughout the bay were evident,
with physical/chemical differences arising from hy-
drological/meteorological forcing and zebra mussel
recruitment. Chlorophyll a concentrations dis-
played corresponding disparities; concentrations
differed between the inner and outer bays and var-
ied intra- and inter-annually. Trained networks re-
produced the intrinsic variance and magnitude of
chl a dynamics. Modeled-measured concentrations
best approximated a 1:1 relationship in a hybrid
network incorporating both supervised and unsu-
pervised training whereas concentrations greater
than 15 lg/L were underestimated in networks uti-
lizing only supervised training, likely because of

inadequate training data. Variables indicative of
phytoplankton nutrition, acting as proxy measure-
ments of algal biomass, and/or corresponding to
descriptors of hydrological and meteorological
forcing had the greatest influence upon modeled
concentrations. A conjunctive decision tree and a
novel sensitivity analysis provided rule-based infor-
mation and comprehensible interpretation of rela-
tionships among multiple predictor variables. From
this, the ‘‘knowledge’’ embedded in trained net-
works proved extractable and usable for ecological
theory generation and/or decision making within
water-quality problem solving. Forecasting initia-
tives within the developing Great Lakes Observing
System may be best served by embedding neural
networks in mechanistic models to quantitatively
initialize variables, qualitatively delineate condi-
tions for projecting ecological structure, and/or
estimate deviations from predictability within
mechanistic simulations.
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attenuation; MSE, mean square error; NOX
� -N, ni-

trite (NO2
� )þnitrate (NO3

� )-nitrogen; NH4
þ -N, am-

monia-nitrogen; NOAA, National Oceanic and
Atmospheric Administration; NID, network inter-
pretation diagram; PCA, principal component anal-
ysis; PE, processing element; POC, particulate
organic carbon; PSiO2, particulate silica; ortho-
phosphate-phosphorus, PO4

� 3-P Secchi, secchi
depth; SiO2, silica; Temp, temperature; TP, total
phosphorus; TSS, total suspended solids

The increased incidence of natural disturbances, ant-
hropogenic stressors, and/or human health risks
throughout aquatic systems has necessitated accurate
characterization of system-level stability and/or sustain-
ability. Phytoplankton are the major source of (pelagic)
carbon and have a fundamental influence on global cli-
matology. Their biomass, compositional, and/or cellular
responses to environmental variations are rapid and of-
ten predictable (Harris 1986, Frouin and Iacobellis
2002, Tester et al. 2003). As such, phytoplankton serve
as ‘‘ecological sentinels.’’ The ability to functionally link
and conceptually model phytoplankton structure and
function with/from system-level patterns and processes
is central to resource stewardship and proactive mitiga-
tion of disturbances, stressors, and health risks.

An intuitive premise for ecological modeling is that
interacting abiotic and biotic variables create environ-
mental gradients responsible for the transitory and
spatially explicit patterns of natural populations; as
such, these variables may serve as predictors for phyto-
plankton dynamics and distributions (Hedgepeth
1977, Scavia et al. 1981, Bierman et al. 2005, Millie
et al. 2006). However, predictable (linear) associations
among environmental variables often do not exist and,
as a consequence, modeling populations often is de-
pendent upon characterizing complex non-linear, and
stochastic interactions among patterns and processes
(see Sugihara et al. 1990, Harris 1994, Mazumder
1994, Strutton et al. 1996, Jeong et al. 2003). In this
regard, artificial neural networks (ANNs) show great
promise for modeling phytoplankton abundance and
dynamics (Recknagel 2003a). Neural networks are
combinations of simple, non-linear models based on
a ‘‘learn-by-example’’ paradigm (Huang and Xing
2002), whereby correlated patterns between input
data (e.g. environmental conditions) and correspond-
ing output values (e.g. phytoplankton biomass) are
identified and reproduced. The ‘‘learned’’ models
then are used to predict output values from new, in-
dependent data sets. However, deconvolving the in-
teraction among predictor variables and delineating
the influence of a single (or suites of) variables(s) on a
desired output is difficult and often nonsensical (Gar-
son 1991, Huang and Xing 2002, Olden and Jackson
2002, Millie et al. 2006).

Saginaw Bay, Lake Huron (Laurentian Great Lakes)
has a long history of anthropogenic eutrophication and

perturbation. Before 1980, water-column chl a and to-
tal phosphorus (TP) concentrations regularly exceed-
ed 20mg/L and 1mM, respectively, with cyanobacteria
typically dominating phytoplankton assemblages dur-
ing hot, summer months. Concentrations of chl a and
TP (along with corresponding phytoplankton blooms)
decreased during the late 1980s and early 1990s, after
aggressive nutrient abatement programs were initiated
(Freedman 1974, Bierman et al. 1984, Makarewicz
and Bertram 1991, Brittain et al. 2000). However,
the reoccurrence of cyanobacterial blooms since 1994
(attributed to the long-term effects of nonindigenous
zebra mussels, Dreissena polymorpha Pallas, Vanderploeg
et al. 2001), present serious, recognized impacts to
aquatic resources, human health, and community eco-
nomics.

Identifying interactive quantifiers/predictors, envi-
ronmental forcing factors, and data-assimilative mode-
ling approaches for the forecasting of water quality and
phytoplankton abundance within Saginaw Bay and
throughout the Great Lakes is critical. Water column
chl a concentration is a quantifier for (total) phyto-
plankton biomass and used to monitor system-level
response to changing environmental variables (Paerl
1988, Millie et al. 1993, LaBaugh 1995, Paerl et al.
2003). Here, we (1) identified spatial/temporal pat-
terns of diverse water-quality variables throughout
Saginaw Bay; (2) using candidate abiotic variables, de-
veloped and validated ANNs for modeling chl a con-
centrations; (3) extracted, from trained networks, the
impact and/or functional relevance of physical and
chemical variables to phytoplankton abundance; and
(4) discussed the appropriateness of incorporating sta-
tistical-based modeling into ecological forecasting ini-
tiatives within an evolving Great Lakes Observing
System (GLOS).

MATERIALS AND METHODS

Study site and data acquisition. Saginaw Bay (Fig. 1), located
along the eastern central shoreline of Michigan’s lower pe-
ninsula, is a shallow, productive extension (approximately
2960 km2) of Lake Huron, the third largest of the Great
Lakes by volume (Fuller et al. 1995). The bay is subjectively
divided into inner and outer bays, each having a distinct to-
pography and physical/chemical characteristics (Table 1).
The shallow inner bay (mean depth, 5.1 m) is mostly influ-
enced by the Saginaw River, which accounts for 70% of total
tributary inflows. The deeper outer bay (mean depth,
13.7 m) is heavily influenced by the cold, nutrient-poor
waters of Lake Huron. Circulation is weak (7–11 cm/s) with
water exchanges between Lake Huron and the outer bay and
the inner and outer bays occurring mostly along the north-
ern shore, with alterations attributable to wind events
(Johengen et al. 1995, Nalepa et al. 1996). The bay’s drain-
age basin encompasses approximately 22,556 km2 of agricul-
tural, industrial, and urban lands; excessive nutrient inputs
(nearly two metric tons TP per day) from the basin during
the 1970s and 1980s altered waters from a mesotrophic to
eutrophic state (Fuller et al. 1995), with the inner bay being
the most affected (Canale and Squire 1976, Dolan et al.
1978). Based on impairments of resource utilization arising
from eutrophication, toxic substance and bacterial contami-
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nation, and sedimentation, Saginaw Bay was designated one
of 43 ‘‘areas of concern’’ throughout the Great Lakes by the
Great Lakes Water Quality Agreement (of 1972, amended in
1978) between the United States and Canada.

As part of a National Oceanic and Atmospheric Adminis-
tration (NOAA) program assessing the impact of zebra mussels
on Saginaw Bay structure and function, water quality data (Ta-
ble 1) were acquired on a tri-weekly to monthly basis from
April through November, 1991–1996. Data used herein and
information concerning sampling sites and dates, collection

methodology, sample processing, and analytical procedures
were presented within NOAA Technical Reports, TM-091
(Nalepa et al. 1996) and TM-115 (Johengen et al. 2000, avail-
able at http://www.glerl.noaa.gov/pubs/techrept.html). Data
summaries and interpretation, in part, were contained in pa-
pers published as a special issue to the Journal of Great Lakes
Research (Nalepa and Fahnenstiel 1995).

Statistical analysis. To ascertain the symmetric distribution
of and/or linear relationships among variables (and thereby
determine a variable’s adequacy for inclusion or elimination
within statistical model development), the associations be-
tween physical, chemical, and biological variables within Sag-
inaw Bay first were identified. The correspondence between
variables was determined using Pearson product moment
correlation coefficients (SYSTAT 10, 2000). Data were square
root- or logarithmic-transformed (where appropriate) to sta-
bilize variance and increase homogeneity of normalcy (Sne-
decor and Cochran 1980). Sampling sites and dates were
characterized, with respect to physical and chemical varia-
bles, with a principal component analysis (PCA) utilizing eu-
clidean distances (Clarke and Gorley 2001, Clarke and
Warwick 2001). For the PCA, monthly means of variables
were utilized. An unpaired T-test or an analysis of varaince
(SYSTAT 10, 2000) assessed differences among water-quality
variables between the inner and outer bays and spatial/tem-
poral differences among monthly means of chl a concentra-
tions.

Artificial neural networks. Concentrations of chl a were pre-
dicted from physical and chemical variables using ANNs
incorporating both supervised training and a hybrid inte-
gration of supervised and unsupervised training (Fig. 2). For
supervised training (in which values for input and output
variables are known), multi-layer perceptrons using a back-
propagation learning algorithm were constructed with Ne-
uroSolutions v4.32 or 5.01 software (NeuroDimension Inc.;
Gainesville, FL, USA):

½chl a� ¼ ffWP1;P3 ½fðWX1;P1 � X1 þWX2;P1 � X2 . . . WXi ;P1 � Xi þ e1Þ�g
þ ffWP2;P3 ½f ðWX1;P2 � X1 þWX2;P2 � X2 . . . WXi ;P2 � Xi þ e2Þ�g
þ ffWPj ;P3 ½fðWX1;Pj � X1 þWX2;Pj � X2 . . . WXi ;Pj � Xi þ ejÞ�g

ð1Þ
where X1,2, . . . i are candidate water quality predictor varia-
bles, P1,2,3, . . . j are PEs, and WX1,2, . . . i,P1,2,3, . . . j are scalar
weights, and e1,2, . . . j is the error. Hybrid networks imple-
mented unsupervised training (in which inputs were pre-
processed to identify and extract sets of uncorrelated linear
features) immediately before supervised training. As the un-
supervised procedure, PCA-derived eigenvectors were ex-
trapolated from the correlation matrix of the input data
vector using Hebbian learning (Principe et al. 2000).

Network structure and operation (including data normali-
zation/derivation) followed that presented by Millie et al.
(2006; refer to Fig. 2). Distinct training, cross-validation and
testing data sets were selected randomly. For training ANNs,
60% of data vectors were presented 1000–2000 times to the
network with this process repeated 20–100 times. ‘‘Learning’’
and momentum rates and step sizes were allowed to vary dur-
ing iterative training to accelerate ‘‘learning’’ and to ensure
network convergence to the global minimum (Barciela et al.
1999, Olden 2000, Principe et al. 2000, Olden and Jackson
2002). The mean square error (MSE) also was computed for a
‘‘cross validation’’ subset (15% of data vectors; after Olden
2000, Olden and Jackson 2002, Gurbuz et al. 2003) to provide
an unbiased estimation of network prediction and to ensure
optimal network design. If the MSE within the training or
cross-validation data sets fell below 0.01 or began to increase
(i.e. an indication that the network began to memorize the
data; see Karul et al. 2000, Gurbuz et al. 2003), training was

FIG. 1. Location of sampling stations within Saginaw Bay,
1991–1996. Inset figure places study area relative to Laurentian
Great Lakes (USA).

TABLE 1. Subsurface water quality variables within the in-
ner and outer Saginaw Bay, 1991–1996 (refer to Fig. 1).

Variable (units) Inner bay (I 5 480) Outer bay (n 5 240)

Temp (1 C)* 16.46 � 0.28 14.35 � 0.39
Secchi (m)* 1.91 � 0.05 5.03 � 0.14
Kd (m�1)* 0.99 � 0.04 0.35 � 0.01
TSS (mg/L)* 7.57 � 0.39 1.79 � 0.11
TP (mg/L)* 18.40 � 0.59 5.78 � 0.22
PO4

�3-P (mg/L)* 1.25 � 0.11 0.78 � 0.04
NOX

� -N (mg/L)* 0.41 � 0.02 0.30 � 0.01
NH4

þ -N (mg/L) 22.70 � 1.25 18.88 � 1.22
SiO2 (mg/L)* 1.32 � 0.05 1.03 � 0.03
PSiO2 (mg/L)* 1.05 � 0.04 0.46 � 0.03
Cl (mg/L)* 17.49 � 0.31 8.75 � 0.19
POC (mg/L)* 1.21 � 0.04 0.44 � 0.02
DOC (mg/L)* 3.61 � 0.07 2.29 � 0.03
chl a (mg/L)* 6.66 � 0.29 2.35 � 0.16

Data are means � 1 SE.
*Indicates difference (P � 0.05) between inner and outer

bays.
Temp, Temperature; Kd, light attenuation Secchi, secchi depth;

TSS, total suspended solids; TP, total phosphorus; PO4
�3-P, or-

thophosphate-phosphorus; NOX
� -N, nitrite (NO2

� )þnitrate
(NO3

� )-nitrogen; NH4
� -N, amonia-nitrogen; SiO2, silica; PSiO2,

particulate silica; Cl� , chloride; POC, particulate organic carbon;
DOC, dissolved organic carbon; chl a, chlorophyll a.
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terminated. The trained ANN then was applied to a ‘‘testing’’
subset (25% of data vectors) not used in training and cross-
validation.

A correlation coefficient measured the agreement between
modeled and measured chl a concentrations. Linear regression
determined ‘‘lines-of-best-fit’’ for modeled:measured relation-
ships of chl a concentrations. An analysis of covariance tested
whether slopes of regression estimations differed from the
slope of a corresponding 1:1 modeled:measured relationship
(SYSTAT 10, 2000).

Discerning predictor variable impacts and interaction. Several
approaches were used to optimize the inclusion or exclusion
of candidate predictor variables within networks and eluci-
date the qualitative and quantitative impacts of and relation-
ships among predictor variables. Sensitivity analysis
determined the variation in chl a concentration attributable
to deviations of individual variables (while other variables
remained fixed at their respective means; Principe et al.
2000); deviations from the mean within � one and two
standard deviations discerned the most influencing parame-
ter(s) during common and disturbance conditions, respec-
tively (Jeong et al. 2003). The most significant variables (i.e.
those creating the greatest variation in chl a) subsequently
were incorporated into new networks that were trained and
tested, before final model selection. The magnitude/direction
of synaptic weights within trained ANNs was depicted by a
network interpretation diagram (NID) (Özesmi and Özesmi
1999, Olden 2000). The relative share of prediction associ-
ated with input variables then was determined from weight
values using an algorithm originally proposed by Garson
(1991), and later modified by Milne (1995) and Gedeon
(1997).

Decision-tree classification and a novel sensitivity analysis
were conducted to extract rule-based ‘‘knowledge’’ and illus-
trate relationships between/among predictor variables from
the supervised network incorporating numerical and factor

variables, respectively. The TREPAN algorithm constructed a
symbolic, tree-based representation of predictive model out-
comes (i.e. subjective groupings of chl a concentrations; o1.5,
1.51–2.5, 2.51–4, 4.1–9, 9.1–15, and 415mg/L). Unlike tradi-
tional decision-tree structures, the TREPAN algorithm treats
rule-extraction as an inductive learning problem and uses que-
ries to induce a concise, accurate depiction that best approx-
imates the predictive function of the trained network (Craven
1996, Craven and Shavlik 1996). Using an extension of tradi-
tional sensitivity analysis (where individual variables are devi-
ated to denote alterations of the outcome variable), the
interacting influence of multiple abiotic variables were assessed
by varying two and more variables for each of the aforemen-
tioned chl a classifications (with the remaining variables kept
constant at their respective means; Schleiter et al. 2003,
G. R. Weckman et al., unpublished results).

RESULTS

With respect to physical and chemical parameters,
surface waters at sampling sites within the inner and
outer bays from 1991 to 1996 were distinct. Mean val-
ues for almost all water-quality variables were greater
within the inner bay; however, the Secchi depth (Sec-
chi) was greater within the optically clear waters of the
outer bay than within the turbid waters of the inner
bay (Table 1). Mean ammonia-nitrogen (NH4

þ -N) con-
centrations were similar between bays (P40.05). The
PCA included descriptors indicative of hydrological
and meteorological forcing and together explained
approximately 64% of the total variability; Secchi, light
attenuation (Kd), and TP, particulate silica (PSiO2), and
particulate organic carbon (POC) concentrations and
temperature (Temp) and nitrite (NO2

� )þnitrate

FIG. 2. Schematic of artificial neural network (ANN)s. Supervised training: a feed-forward, multi-layer perceptron with back-prop-
agation depicting the interaction among water-quality data (‘‘inputs’’; X1, . . . i), processing element (PE)s (P1, . . . j), synaptic weights
(wX1, . . . i,P1, . . . j and wP1, . . . j,P3), and the modeled chl a concentration (‘‘output’’). For each complete presentation of the data set (an epoch),
input vectors were multiplied by scalar weights prior to processing by hyperbolic tangent functions (hidden layer), with subsequent
values multiplied by weights and scaled via a linear-bias transfer function (output layer) to produce a modeled output. Modeled con-
centrations were ‘‘fed forward’’ for comparison to actual concentrations, from which the mean square error (MSE) was computed
and ‘‘back-propagated’’, with the weights incrementally adjusted, through gradient descent, in the direction of the minimum error
among PEs. As error minimized over multiple epochs, weight values stabilized and modeled concentrations increasingly approximated
measured concentrations. Unsupervised training: optimal linear features were extracted (as eigenvectors via Hebbian learning) from
water-quality vectors, after which the eigenvalues were used as input data for supervised training.
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(NO3
� )-nitrogen (NOX

� -N), and NH4
þ -N concentra-

tions explained approximately 47% and 17% of the
variability within the first and second PC, respectively.
From this, a spatial gradient of sampling sites from the
inner to outer bay was evident (Fig. 3a). Phytoplankton
abundance displayed a corresponding spatial disparity
(Fig. 3b), with the mean chl a concentration for the
inner bay greater than that for the outer bay. Concen-
trations maximized within the upper reach of the inner
bay and decreased progressively to the lower reach of
the outer bay (P � 0.001, Fig. 3c).

Temporal differences of physical/chemical variables
also were apparent among sampling sites (although

less so than spatial differences). Sites reflecting late
summer/early fall sampling were dissimilar from sites
reflecting spring/late fall sampling (Fig. 4a). Inter-an-
nual variation among sites was less apparent; however,
sampling sites during 1991 and 1992 were relatively
distinct from sites during other years (Fig. 4c). Month-
ly means of chl a concentrations varied both intra-
and inter-annually (P 5 0.002, F 5 3.29, df 5 7 and
Po0.001, F 5 7.61, df 5 5), after allowing for differ-
ences between bays. Differences in mean concentra-
tions primarily occurred within the inner bay, with the
greatest concentrations during May, August, and Sep-
tember and the least during June and November (Fig.
4b). The greatest concentrations occurred during 1991
and 1994, with the least occurring during 1993
(Fig. 4d).

Supervised ANNs. Numerous networks, incorpo-
rating varied numbers of PEs and hidden layers,
were developed to optimize prediction of chl a con-
centrations. Optimal models were selected, solely on
training and testing performance (i.e. minimization
of error, correspondence between predicted and
measured concentrations, deviations of estimated re-
gression lines from 1:1 modeled:measured relation-
ships).

An ANN, utilizing 12 candidate physical and chem-
ical variables (Temp, Secchi, Kd, chloride (Cl� ), NOX

� -
N, NH4

þ -N, PO4
� 3-P, TP, silica (SiO2), PSiO2, dissolved

organic carbon (DOC), POC) and comprised of one
hidden layer with four PEs, provided the most reliable
estimates of chl a concentrations. Values of MSE for
both the training and cross-validation data subsets
quickly approached zero (Fig. 5a), indicating that the
network had succeeded in ‘‘training’’ the model. Upon
applying the network to the testing data subset, mode-
led data mirrored the general trend in chl a dynamics
(r5 0.89, P � 0.0001; Fig. 5b). A trained ANN utiliz-
ing 16 inputs (incorporating the aforementioned 12
inputs and four factor variables, denoting inner or
outer bay, and surface or subsurface samples) provided
similar prediction of chl a (r5 0.90, P � 0.0001; Fig.
5c). Sensitivity analyses for the original (12 input) net-
work, in which variables were altered one and two
standard deviations around their respective means
(Figs. 6, a and b, respectively), denoted POC, PSiO2,
and TP to be the most important variables for predict-
ing chl a. An ANN, utilizing only these three variables
and comprised of one-hidden layer with 14 PEs, was
successfully trained and cross validated (Fig. 6c) with
no observed improvement (over the original 12 input
model) in predicting chl a (r5 0.89, P � 0.0001; Fig.
6d). In all networks, however, modeled concentrations
underestimated measured concentrations (to varying
degrees) when concentrations exceeded approximate-
ly 15mg/L (e.g. Figs. 5, b and c, and 6d). Although
slopes of modeled:measured regressions differed from
a corresponding 1:1 relationship for all supervised
networks, the mean square and absolute errors (6.86
and 1.59, respectively) for the network incorporating
factor variables (inner/outer bay and subsurface/depth

FIG. 3. (a and b) Two-dimensional ordination of sampling
stations, as determined by a principal component analysis (PCA)
of physical/chemical variables (see Methods). (a) Stations denoted
as a function of inner or outer bay. (b) Mean chl a concentrations
superimposed (as symbols of differing sizes—the larger the sym-
bol, the greater the relative value) on ordination to identify spa-
tial disparity in biomass. Numbers in parentheses along axes
represent percent of total variability explained by the corre-
sponding principal component (PC). (c) Concentrations of
chl a as a function of bay reach (refer to Fig. 1), depicting con-
centration differences along a gradient from the Saginaw River
to the lake proper. Data are means � SE (n 5 87–218).
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sample designation) was less than those for all other
networks, indicating a slightly superior model. Attempts
to optimize performance of this network through re-
duction of inputs by sensitivity analyses did not improve
prediction (data not shown).

Hybrid ANNs. The dimensionality of the input
data set was reduced to single linear combination
(of five eigenvectors) for each data vector. The hybrid
network, coupling this unsupervised training with
supervised training utilizing four PEs within a hidden
layer, provided similar predictive capacity (r5 0.89,
P � 0.001; Fig. 7a) for chl a concentrations as that of
supervised ANNs, but with lesser values for mean-
square and mean-absolute error. Although not dif-
ferent, the slope of the regression for meas-
ured:modeled concentrations (0.80) more closely
approximated a 1:1 relationship than those for su-
pervised ANNs (0.56–0.69), indicting a more realistic
prediction across the entire range of chl a concent-
rations. Sensitivity analyses (in which the initial input
data were varied, before eigenvector derivation)
identified Secchi, PSiO2, POC, and Temp to have
the greatest impact on network prediction (Fig. 7b).

Variable impact and interaction. Prediction of chl a in
supervised ANNs (e.g. Fig. 8a) involved extremely

complex interactions among physical and chemical
variables. Few variables had consistent magnitude or
direction (positive or negative), among all PEs within
trained networks. The apparent strong positive in-
fluences of a few variables within some PEs generally
were ‘‘counter-balanced’’ by equal or lesser negative
influences of the same variables among alternative
PEs. Based on absolute weight values from trained
ANNs, Garson’s algorithm did not denote any par-
ticular one (or few) variable(s) to greatly influence
chl a (to the exclusion of other variables); rather mul-
tiple variables had similar relative effects (approxi-
mately 5% to 13%; Fig. 8b).

The TREPAN algorithm induced a conjunctive (‘‘if-
then’’) decision-tree that best predicted classifications
of chl a throughout Saginaw Bay. Using variable que-
ries for POC, TP, PSiO2, SiO2, Secchi, and NH4

þ -N, the
decision tree delineated classifications across the entire
range of chl concentrations, with prediction for chl a
concentrations exceeding 4mg/L generally distinct
from that of lesser concentrations (Fig. 9). Multiple-
variable sensitivity analysis illustrated the interacting
impact of two- and three-variables on the predictive
classifications of chl a. For example, although TP and
Temp and TP, Temp, and Secchi had similar interact-

FIG. 4. Two-dimensional ordination of sampling stations, as determined by a principal component analysis (PCA) of physical/chemical
variables. Stations denoted as a function of (a) sampling month and (c) year. Numbers in parentheses along axes represent percent of
total variability explained by the corresponding principal component (PC). Concentrations of chl a within the inner and outer bays as a
function of (b) sampling month (n 5 8–100) and (d) year (n 5 13–143). Data are means � SE.
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ing relationships throughout the entire bay (Figs. 10, a
and c, b and d, respectively), the range and magnitude
of the relationship within the inner and outer bays
were distinct, particularly at lower temperatures.

DISCUSSION

Phytoplankton abundance throughout the Great
Lakes reflects the balance between growth and loss
(grazing and sedimentation), which varies seasonally
(Fahnenstiel and Scavia 1987, Scavia and Fahnenstiel

1987, Carrick et al. 1991, 1992, Fahnenstiel et al.
2000, Carrick 2005). Within coastal waters, growth
and accumulation further are mediated through epi-
sodic, short-term (hours to weeks) forcing phenomena
such as storm-induced resuspension (Schelske et al.
1974, Millie et al. 2002, 2003), water-column advection
(Fahnenstiel et al. 1988), and tributary inflows
(Schelske et al. 1984, Klarer and Millie 1994, Lohrenz
et al. 2004). Spatial and temporal gradients of sam-
pling sites were evident within Saginaw Bay, with dif-
ferences attributable to suites of physical and chemical
variables arising from meteorological and hydrological
forcing, and the impacts of zebra mussel invasion.
Phytoplankton abundance, as chl a, mirrored physi-
cal/chemical gradients; concentrations were greatest in
the lower reaches of the inner bay and progressively
decreased lake-ward, reflecting the decreasing impact
of nutrient-laden inflows with increasing distance from
mouth of the Saginaw River (refer to Fig. 1). Within
the inner bay, chl a concentrations were greatest dur-
ing May and July–September, presumably reflecting a
phytoplankton pulse with increased inflows, tempera-
tures, and day length during late spring and the es-
tablishment of cyanobacterial assemblages upon the
onset of high temperatures and a stagnated water col-
umn during mid- to late-summer, respectively (Van-
derploeg et al. 2001, Bierman et al. 2005).

Supervised and hybrid ANN’s characterized the
complex non-linear, and stochastic interactions among
diverse physical and chemical variables throughout the
bay and together reproduced the intrinsic intra- and
inter-annual variance (and magnitude) of chl a dynam-
ics. As such, interacting suites of physical and chemical
variables served as useful predictors for the trends/
patterns of phytoplankton abundance. The (3–4
weeks) sampling resolution within the Saginaw Bay
data set initially might not be expected to typify algal
growth (that often is temporally ‘‘lagged’’; Duarte
1990) and/or resolve episodic, short-term variability
in meteorological and water-column conditions, there-
by prohibiting the assertion of causality for phyto-
plankton accumulation. Lee et al. (2003) noted that a
minimum sampling interval of one week was necessary
for an ANN to accurately reproduce coastal phyto-
plankton dynamics. However, a back-propagation net-
work (such as that used here)—if provided enough
training data and PEs and given the identifiable func-
tion has a finite number of discontinuities—should
serve as a universal approximator for delineating in-
tra-annual/seasonal/cyclic trends among most (limno-
logical) variables (Smith and Mason 1997, Maier et al.
1998, Karul et al. 2000).

Concentrations of chl a greater than 15mg/L were
underestimated in supervised networks, likely because
of inadequate data representation within training data
sets. Maximal phytoplankton biomass within Saginaw
Bay occurred discontinuously, typically in late spring
and/or late summer. Consequently, our sampling res-
olution provided a data set containing only few con-
centrations greater than 15mg/L with which the ANNs

FIG. 5. (a) Mean square error (MSE) associated with training
and cross-validation data during training of a supervised ANN
incorporating 12 predictor variables (refer to Fig. 2). Data are
means, n 5 100. (b) Modeled chl a concentrations as a function of
measured concentrations for the ANN incorporating 12 predic-
tor variables (n 5 244). (c) Modeled chl a concentrations as a
function of measured concentrations for the ANN incorporating
16 predictor variables (n 5 244). The solid line and correspond-
ing statistical information represent the ‘‘best’’ fit for the mode-
led:measured relationship, as derived from linear regression.
The dashed line represents a 1:1 relationship.
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could be adequately trained (see Millie et al. 2006). To
minimize this dilemma, hybrid ANNs reconstructed
diverse water-quality variables onto a small dimen-
sionality space (of eigenvectors). This data preproce-
ssing maximally preserved variance within, while
simultaneously extracting linear features from multi-
ple suites of water quality variables. Although predic-
tive capacity (in terms of r) was not greater for the
hybrid network than that of supervised networks, a
more optimal prediction across the entire range of
‘‘test’’ concentrations resulted (Bowden et al. 2003).
Uncertainty exists as to whether an untried variation
(number of hidden layers, PEs, learning rates, etc.) of a
supervised ANN might have better extrapolated
modeled values outside the range of the measured
concentrations within the training set (Karul et al.
2000), thereby providing a predictive capability com-
parable with that of the hybrid network.

Concentrations of TP, POC, and PSiO2 were iden-
tified to have the greatest influence upon modeled

chl a concentrations (across both common and distur-
bance variations) within supervised networks. The in-
clusion (and importance) of such variables within
networks for Saginaw Bay is intuitive; phosphorus is
the nutrient considered most limiting for phytoplank-
ton photosynthesis and growth throughout the Great
Lakes (Schelske et al. 1974, 1986;, Schelske 1979,
Hartig and Wallen 1984, Fahnenstiel et al. 1998) and
variables acting as proxy measurements, to any signif-
icant degree, for phytoplankton abundance (i.e. POC
and PSiO2 for all algae and diatoms, respectively)
would increase the predictive capability for chl a (Mil-
lie et al. 2006). Modeling the impact of nutrient
perturbations on the stability of microbial food-web
dynamics within central Lake Erie, Heath et al. (2000)
also noted that phosphorus concentration was the ma-
jor ‘‘forcing’’ factor in their simulations. Remarkably,
the use of only three variables as predictors within su-
pervised networks provided a prediction capability
similar to that of supervised/hybrid networks using

FIG. 6. Results of a sensitivity analysis across (a) common ( �1 SD) and (b) disturbance ( �2 SD) variations performed on training
data from the supervised artificial neural network (ANN) incorporating 12 predictor variables. Black-filled bars indicate variables se-
lected for subsequent modeling. (c) Mean square error (MSE) associated with training and cross-validation data subsets during training
of the supervised ANN using the three variables identified by sensitivity analysis (refer to Fig. 2). Data are means, n 5 20. (d) Modeled chl
a concentrations using variables selected by a sensitivity analysis as a function of measured concentrations (n 5 244). Lines and statistical
information as in Fig. 5.
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all abiotic variables. However, no one (or few) varia-
ble(s) greatly impacted chl a (on a relative basis), to the
exclusion of others (Fig. 8b). Rather, multiple abiotic
variables interacted to impact trends and patterns of
phytoplankton abundance, signifying the holistic com-
plexity of physical and chemical relationships through-
out the bay. In addition, multiple variables (TP, PSiO2,
POC, Secchi, Temp) greatly influenced chl a concent-
rations within the hybrid network. This selection of
variables is insightful; the chosen variables correspond-
ed to (groups of) variables explaining the majority of
variance associated with the first and second PCs (com-
pare Fig. 8b with Figs. 3 and 4) and were descriptors
indicative of hydrological and meteorological differ-
ences among sampling sites on an intra- and inter-an-
nual basis.

Water clarity in the inner bay typically is influenced
by River discharge, phytoplankton production, and
wind-driven resuspension during the spring, summer,
and fall, respectively (Budd et al. 2001). The recruit-
ment of zebra mussels (beginning in fall of 1991) dra-
matically impacted limnological conditions; chl a and
TP concentrations decreased with a corresponding in-
crease in water clarity (Fahnenstiel et al. 1995, Nalepa
et al. 1995, 1999, Budd et al. 2001) and nutrient uti-

lization by phytoplankton appeared to slow as mussel
excretion provided an alteration between phosphorus-
limited and -replete conditions (Heath et al. 1995,
Bierman et al. 2005). Undoubtedly, the inclusion of
mussel density and/or biomass as (a) variable(s) would
have altered (improved?) prediction of phytoplankton
abundance, albeit r values for modeled:measured con-
centrations approximated 0.90 for all ANNs. It also
may be argued that the contemporary water quality
variables utilized were the result of and reflected the
impact(s) of zebra mussels on the holistic physical and
chemical characteristics of the water column. In any
event, comprehensive spatial/temporal data concern-
ing zebra mussel occurrence was not available for net-
work inclusion; mussel data only was available at most,
for only six stations and for one fall sampling date an-
nually (Nalepa et al. 2002).

An important attribute for ecological modeling is to
derive the importance of and relationships among
abiotic (predictor) variables, thereby providing the bas-
es for scientific theory generation and/or decision mak-
ing within water-quality problem solving (e.g. Reckhow
1994). Here, networks were developed to optimize
prediction of chl a. However, ANNs typically have
high-dimensional input space with no explicit, declar-
ative knowledge structure (Craven 1996, Huang and
Xing 2002); the ‘‘knowledge’’ of trained networks is
encoded (almost incomprehensibly) within the inter-
acting complexity of synaptic weights among input-
hidden-out layers (e.g. Fig. 7a). As such, it is not at all
surprising that most ecologists consider ANNs to be
‘‘black boxes’’ and treat them as numerical enigmas
(Olden and Jackson 2002). Clearly, qualitative and
quantitative information concerning the environmen-
tal variables used to capture (and explain) the predic-
tive outcomes need to be extracted from complex
ANNs modeling the timing and magnitude of phyto-
plankton accumulation (Wigham and Fogel 2003,
Recknagel 2003b).

Simple, visualization techniques (easier to interpret
than NIDs) illustrating network prediction complexity
and interaction are required to generalize individual
and/or multiple abiotic influences upon chl a through-
out dynamic coastal waters. To this end, the knowledge
and ‘‘rule’’ sets embedded in an optimal ANN for Sag-
inaw Bay were emulated and illustrated. The TREPAN
algorithm provided variable translation for network
predictive outcomes across high-dimensional space
(i.e. 16 predictor variables) and induced a comprehen-
sible, conjunctive decision matrix for predictive chl a
classifications. Although the trained network from
which the decision tree was induced incorporated
both numerical and factor predictor variables, only
numerical values delineated outcome classifications
(further highlighting the distinct interacting physical
and chemical relationships throughout the inner and
outer bays and their holistic importance in intra- and
inter-annual variation of chl a). Interestingly, the var-
iables designated within tree ‘‘nodes’’ also were iden-
tified as ‘‘best predictor’’ variables by traditional

FIG. 7. (a) Modeled chl a concentrations as a function of
measured concentrations for the hybrid artificial neural network
(ANN) (n 5 244). Lines and statistical information as in Fig. 5. (b)
Results of a sensitivity analysis across common ( �1 SD) and dis-
turbance ( �2 SD) variations performed on the training data
subset from the hybrid ANN.
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sensitivity analyses for both supervised and hybrid net-
works (see above). However, such sensitivity analyses
can only provide information concerning how network
outcomes (e.g. chl a) may or may not be altered by
deviation of a single variable (e.g. TP). Improving on
this obvious limitation, multi-variable sensitivity analy-
sis provided interpretable illustrations for interacting
two-dimensional (e.g. TP, Temp) and three-dimension-
al (e.g. TP, Temp, Secchi) contributions between/
among abiotic variables on predictive classifications of
chl a. From such graphical representations, not only
can interacting contributions of variables within dis-
tinct portions of the bay be identified, but the inter-
acting impact or contribution of potentially ‘‘hidden’’
variables also may be delineated. In particular, distinct
mathematical expressions approximating the linear/
curvilinear relationship and/or interaction of multiple
abiotic variables upon model outcomes can be (easily)
generated for future model formulation.

Relevance of ANNs to a GLOS. The Great Lakes
constitute the largest system of fresh, surface water
on earth (containing approximately 18% of the world
supply); as such, they are an invaluable natural re-

source (for consumption, transportation, power, rec-
reation, etc.) and impact global climatology and
carbon cycling (Fuller et al. 1995). Effective resource
management for these waters requires timely and ac-
curate assessment and prediction of biological out-
comes in response to ecosystem change. However,
before the routine assimilation of ecological mode-
ling into Great Lakes management strategies, the
means to integrate prediction with interpretable
process-level information over dynamic spatial and
temporal scales is required.

Coastal assessment programs typically have de-
pended upon adaptive, invasive sampling with its in-
termittent data acquisition, resulting in discontinuous
‘‘snapshots’’ of the ecological continuum. These pro-
grams have become increasingly reliant upon autono-
mous data acquisition often integrated across multi-
platform sampling networks and observatories, with
their potential for real-time interpretation of system-
level variability (Dickey 2003, Moersdorf and Meindl
2003, Schofield and Tivey 2004, Paerl et al. 2005). Mi-
croelectronic-based probes/sensors (biological, chemi-
cal, physical) and fixed/transportable sampling

FIG. 8. (a) A network interpretation diagram (NID) for the supervised artificial neural network (ANN) incorporating 12 predictor
variables. Dashed and solid lines depict negative (inhibitory) or positive (excitatory) effects, respectively, upon modeled concentrations by
synaptic weights among input-hidden-output layers. Line thickness portrays the relative magnitude of the weight (i.e. greater values
indicate more significance in prediction, compared to lesser values). Contrasting inhibitory/excitatory weights entering the same
processing element (PE) identifies variable interaction (from Olden 2000, Olden and Jackson 2002). (b) The relative share of prediction
associated with abiotic/biotic variables in modeling chl a concentrations, as determined using Garson’s Algorithm. Dark shade denotes
variables having the greatest impact on prediction (see Results).
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platforms are evolving technologies, providing a
never-before recognized sampling resolution across ec-
ological, system, and organismal scales. The resulting
(and potential) increase in data acquisition necessitates
a requirement for novel data manipulation/minimiza-
tion, pattern recognition, and information synthesis.

Neural networks developed for Saginaw Bay uti-
lized abiotic data collected through both invasive and
instrumental-based sampling protocols. Direct quanti-
fication of select abiotic variables (Temp, PO4

� 3-P,
NOX

� -N, NH4
þ -N, SiO2, Cl� ) is possible using readily

available autonomous probes and sensors. Other var-
iables can be approximated, to varying degrees of suc-
cess, from data acquired through nutrient probes (TP
from PO4

�3-P), PAR sensors (Kd), and transmissome-
ters [total suspended solids (TSS), POC]. When these
10 abiotic variables were used as predictors in a distinct
supervised network (comprised of one-hidden layer

optimized with four PEs), the correspondence
(r5 0.87; P � 0.0001) between measured and mode-
led chl a concentrations and predictive capacity of the
network (r2 5 0.76; P � 0.001) were comparable with
that obtained in previous supervised/hybrid networks
using all available variables. Concentrations of POC,
TP, and NH4

þ -N were identified (via sensitivity analy-
sis) to have the greatest influence on modeled chl a
concentrations in this ANN, consistent with previous
findings denoting these variables to discern (in part)
differences among sampling sites, greatly impact pre-
diction in ANNs, and act as discriminating ‘‘nodes’’ for
predictive chl a classifications in the conjunctive deci-
sion matrix. From this, it appears that chl a concent-
rations throughout the physically and chemically
distinct inner and outer bays may be dependably
modeled using abiotic data acquired via contemporary
autonomous technology.

FIG. 9. A conjunctive classification tree,
derived using the TREPAN algorithm (see
Methods) for the supervised artificial neural
network (ANN) incorporating 16 predictor
variables. Refer to Table 1 for variable abbre-
viations and units. Dashed and solid lines de-
pict negative or positive responses,
respectively, to declared variable values/limits
within decision nodes.

FIG. 10. Results of a multi-variable sensi-
tivity analysis performed on training data
from the supervised artificial neural network
(ANN) incorporating 16 predictor variables.
(a and c) Relationships between temperature
(Temp) and total phosphorus (TP) across clas-
sifications of chl a concentration within the in-
ner and outer bays, respectively. (b and d)
Relationships between Temp, TP, and Secchi
depth (Secchi) across classifications of chl a
concentration within the inner and outer bays,
respectively.
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Such network-based prediction of chl a can assist
data synthesis and knowledge-based modeling within
forecasting initiatives for a developing GLOS (http://
www.glc.org/glos/; Schwab et al. 1992, Schwab and
Bedford 1999). Adaptive models addressing the tim-
ing and proliferation of toxic cyanobacterial abun-
dance in response to nutrient, meteorological, and
hydrological forcing, along with potential human-
health impacts, are a desirable component for the
GLOS. Mechanistic modeling of Great Lakes phyto-
plankton and associated abiotic/biotic forcing functions
(Scavia et al. 1981, Heath et al. 2000, Bierman et al.
2005) may be best served by a modular framework in
which ANNs (with corresponding’ rule-extraction’
methodologies) are embedded within system-level,
mechanistic models and used to quantitatively initial-
ize variables, qualitatively delineate conditions for pro-
jecting ecological structure; and/or estimate deviations
from predictability within mechanistic simulations
(Murray and Parslow 1999).

For example, Walsh et al. (2001, 2003) utilized a
framework of ecological models embedded in a phys-
ical model to simulate the onset of toxic phytoplankton
blooms in response to diverse nutrient regimes
throughout Florida coastal waters. However, their
models required enormous sampling-derived data
sets for parameter estimation, specification of the ini-
tial phytoplankton biomass, and quantification of abio-
tic/biotic interactions known to affect bloom dynamics
and rate processes. Ambiguity in the ‘‘initialization’’
step, omission of pertinent parameters, and/or inclu-
sion of parameters with uncertain ‘‘boundary condi-
tion’’ can result in simulation forecasting that is at best,
only ‘‘crude approximations of reality’’ (after Maier
et al. 1998). Initialization parameters and delineation
of variable ‘‘boundary conditions’’ for Great Lakes
cyanobacterial assemblages could be continuously de-
rived/altered via ANNs embedded within GLOS fore-
cast simulations and incorporating historical abiotic/
biotic data, with networks ‘‘updated’’ as new data be-
come available.

Knowledge gained from a modular modeling
framework would allow the integration of the interac-
tive physical, chemical, and biological forces that drive
ecological change with concurrent estimation of phyto-
plankton abundance along physical–chemical gra-
dients and ecosystem to regional scales. Moreover,
when combined with event–response confirmation
(http://www.glerl.noaa.gov/res/Centers/HumanHealth/
hab/EventResponse/EventResponse.html), an effective
cyanobacterial model would assist in providing an ob-
jective early warning system for alerting scientists, wa-
ter resource managers, fisheries personnel, and public
health officials to instances/impacts of toxic bloom oc-
currence (Millie et al. 1999). Products from such a
multi-faceted approach then can be assimilated into
ecological data portals (e.g. AIBS/NSF’s National Envi-
ronmental Observatory Network, NOAA’s Integrated Ocean
Observing System, and Ocean and Human Health Initia-
tives) facilitating regional-scale data dissemination ef-

forts and subsequently providing for the development/
application of scientifically based environmental and
public-health policy.

This work is a portion of the multi-disciplinary research pro-
gram of the Center of Excellence for Great Lakes and Human
Health, funded by the Oceans and Human Health Initiative of
NOAA’s Office of Global Programs and the Cooperative Inst-
itute for Limnology and Ecosystems Research, a joint institute
of the University of Michigan and NOAA’s Office of Oceanic
and Atmospheric Research. Reference to proprietary names
are necessary to report factually on available data; however,
the Florida Institute of Oceanography, Ohio University,
NOAA, Pennsylvania State University, University of South
Florida, Florida Fish and Wildlife Conservation Commission,
and University of Michigan neither guarantee nor warrant the
standard of a product and imply no approval of a product to
the exclusion of others that may be suitable.
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